Singh A, Cole R, Espinoza A, Wessel J, Cavanagh J, Narayanan NS. Evoked mid-frontal activity predicts cognitive dysfunction in Parkinson's disease. Journal of Neurology, Neurosurgery & Psychiatry. doi: 10.1136/jnnp-2022-330154

Bosch TJ, Cole RC, Bezchlibnyk Y, Flouty O, & Singh A. (2023). Effects of Very Low-and High-Frequency Subthalamic Stimulation on Motor Cortical Oscillations During Rhythmic Lower-Limb Movements in Parkinson's Disease Patients. Journal of Parkinson's disease. PMID: 37092236

Bosch TJ, Espinoza AI, & Singh A. (2023). Cerebellar oscillatory dysfunction during lower-limb movement in Parkinson's disease with freezing of gait. Brain Research, 148334.



Bosch TJ, Espinoza AI, Mancini M, Horak FB, & Singh A. (2022). Functional Connectivity in Patients With Parkinson’s Disease and Freezing of Gait Using Resting-State EEG and Graph Theory. Neurorehabilitation and Neural Repair, 36(10-11):715-25.

Espinoza AI, May P, Anjum MF, Singh A, Cole RC, Trapp N, Dasgupta S, & Narayanan NS. (2022). A pilot study of machine learning of resting-state EEG and depression in Parkinson’s disease. Clinical Parkinsonism & Related Disorders, 100166.

Nwogo RO, Kammermeier S, & Singh A. (2022) Abnormal neural oscillations during gait and dual-task in Parkinson’s disease. Frontiers in Systems Neuroscience, doi:

Singh A, Cole RC, Espinoza AI, Wessel JR, Cavanagh JF, & Narayanan NS. (2022). Evoked midfrontal activity predicts cognitive dysfunction in Parkinson’s disease.  medRxiv, doi: 

Masilamoni GJ, Sinon CG, Kochoian BA, Singh A, Mcriner AJ, Leventhal L, & Papa SM. (2022). Phosphodiesterase 9 inhibition prolongs the antiparkinsonian action of L-DOPA in parkinsonian non-human primates. Neuropharmacology, 212, 109060.

Cole RC, Espinoza AI, Singh A, Berger JI, Cavanagh JF, Greenlee JD, & Narayanan NS. (2022). Novelty-induced frontal-STN networks in Parkinson’s disease. Cereberal Cortex,

Navid MS, Kammermeier S, Niazi IK, Sharma VD, Vuong SM, Boetzel K, Greenlee JD, & Singh A. (2022). Cognitive task-related oscillations in human internal globus pallidus and subthalamic nucleus. Behavioural Brain Research, 424, 113787.



Espinoza AI, Scholl JL, & Singh A. (2021). TMS bursts can modulate local and networks oscillations during lower-limb movement. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society . doi: 10.1097/WNP.0000000000000896.

Bosch TJ, Barsainya R, Ridder A, Santosh K, & Singh A. (2021) Interval timing and midfrontal delta oscillations are impaired in Parkinson's disease patients with freezing of gait. Journal of Neurology, 269 (5), 2599-2609.

Scholl JL, Espinoza AI,  Leedom M, Baugh LA, Berg-Poppe P, & Singh A. (2021). Relationships between freezing of gait severity and cognitive deficits in Parkinson’s disease. Brain sciences, 11(11):1496.

Bosch TJ, Groth C & Singh A. (2021). Resting-state low-frequency cerebellar oscillations can be abnormal in Parkinson’s disease. The Cerebellum, 10:1-5.

Groth C, Singh A, Zhang Q, Berman BD, & Narayanan NS (2021). GABAergic modulation in movement related oscillatory activity: A review of the effect pharmacologically and with aging. Tremor and Other Hyperkinetic Movements, 11.

Bosch TJ, Kammermeier S, Groth C, Leedom M, Hanson EK, Berg-Poppe P & Singh A. (2021). Cortical and cerebellar oscillatory responses to postural instability in Parkinson's disease. Frontiers in Neurology, 2005.

Bosch TJ, Groth C, Eldridge TA, Gnimpieba EZ, Baugh LA & Singh A. (2021). Altered cerebellar oscillations in Parkinson’s disease patients during cognitive and  motor tasks. Neuroscience, 475:185-96.

Singh A, Cole RC, Espinoza AI, Evans A, Cao S, Cavanagh JF, & Narayanan NS. (2021). Timing variability and midfrontal ~4 Hz rhythms correlate with cognition in Parkinson's disease. NPJ Parkinsons Disease, 7 (1).



Singh A & Papa SM. (2020). Striatal Oscillations in Parkinsonian Non-Human Primates. Neuroscience, PMID: 32905842.

Anjum MF, Dasgupta S, Mudumbai R, Singh A, Cavanagh JF, & Narayanan NS. (2020). Linear predictive coding distinguishes spectral EEG features of Parkinson's disease. Parkinsonism & Related Disorders, PMID: 32891924. 

Singh A, Cole RC, Espinoza AI, Brown D, Cavanagh JF, & Narayanan NS. (2020). Frontal theta and beta oscillations during lower-limb movement in Parkinson’s disease. Clinical Neurophysiology, 131(3) 694-702.




Beck G*, Singh A*, Zhang J*, Potts LF, Yoo JM, Park ES, Mouradian MM & Papa SM. (2019). Role of striatal ΔFosB in L-Dopa-induced dyskinesias of parkinsonian non-human primates. Proceedings of the National Academy of Sciences of the United States of America, 116 (37) 18664-18672. (*equal first author).

Singh A, Trapp NT, De Corte B, Cao S, Kingyon J, Boes AD, & Parker KL. (2019). Cerebellar theta-frequency transcranial pulsed stimulation increases frontal theta oscillations in patients with schizophrenia. The Cerebellum, 1-11.

Singh A, Cao S, Kingyon J, Parker KL (2019). Proceedings # 32: Effects of cerebellar delta and theta frequency tACS on cognitive performance in patients with schizophrenia. Brain Stimulation 12(2).




Singh A, Richardson SP, Narayanan NS, & Cavanagh JF. (2018). Frontal midline theta is diminished during cognitive control in Parkinson’s disease. Neuropsychologia 117, 113-122.

Singh A. (2018). Oscillatory activity in the cortico-basal ganglia-thalamic neural circuits in   Parkinson’s disease. European Journal of Neurosciencen 48 (8), 2869-2878.

Kammermeier S, Maierbeck K, Dieterich L, Plate A, Lorenzel S, Singh A, Bötzel K, & Maurer C. (2018). Qualitative postural control differences in Idiopathic Parkinson's Disease vs. Progressive Supranuclear Palsy with dynamic-on-static platform tilt. Clinical Neurophysiology 129 (6), 1137-1147.

Singh A, Jenkins MA, Burke KJ, Beck G, Jenkins A, Scimemi A, Traynelis SF, & Papa SM. (2018). Glutamatergic tuning of hyperactive striatal projection neurons controls the motor response to dopamine replacement in parkinsonian primates. Cell Reports 22(4), 941-952.

Kammermeier S, Dieterich L, Maierbeck K, Plate A, Lorenzel S, Singh A, Ahmadi A, & Bötzel K. (2018). Postural stabilization differences in Idiopathic Parkinson Syndrome and Progressive Supranuclear Palsy during self-triggered fast forward weight lifting. Frontiers in Neurology 8, 743.




Kammermeier S, Singh A, & Botzel K (2017) Intermediate Latency-Evoked Potentials of Multimodal Cortical Vestibular Areas: Galvanic Stimulation. Frontiers in Neurology 8, 587.

Kammermeier S, Dietrich L, Maierbeck K, Plate A, Lorenzl S, Singh A, & Botzel K (2017) Neck Vibration Proprioceptive Postural Response Intact in Progressive Supranuclear Palsy unlike Idiopathic Parkinson's Disease. Frontiers in Neurology 8, 689.

Beck G, Singh A, & Papa SM (2017) Dysregulation of striatal projection neurons in Parkinson's disease. Journal of Neural Transmission (Vienna).




Singh A, Mewes K, Gross RE, DeLong MR, Obeso JA, & Papa SM. (2016). Human striatal recordings reveal abnormal discharge of projection neurons in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 113(34), 9629-9634.

Plate A, Klein K, Pelykh O, Singh A, & Bötzel K. (2016). Anticipatory postural adjustments are unaffected by age and are not absent in patients with the freezing of gait phenomenon. Experimental Brain Research, 1-10.




Singh A, Liang L, Kaneoke Y, Cao X, & Papa SM. (2015). Dopamine regulates distinctively the activity patterns of striatal output neurons in advanced parkinsonian primates. Journal of Neurophysiology, 113(5), 1533-1544.

Singh A, Gutekunst CA, Uthayathas S, Finberg JP, Mewes K, Gross RE, Papa SM, & Feld Y. (2015). Effects of fibroblast transplantation into the internal pallidum on levodopa-induced dyskinesias in parkinsonian non-human primates. Neuroscience Bulletin, 31(6), 705-713.

Potts LF, Park ES, Woo JM, Dyavar Shetty BL, Singh A, Braithwaite SP, Voronkov M, Papa SM, & Mouradian MM. (2015). Dual kappa-agonist/mu-antagonist opioid receptor modulation reduces levodopa-induced dyskinesia and corrects dysregulated striatal changes in the nonhuman primate model of Parkinson's disease. Annals of Neurology, 77(6), 930-941.




Potts LF, Wu H, Singh A, Marcilla I, Luquin MR, & Papa SM. (2014). Modeling Parkinson's disease in monkeys for translational studies, a critical analysis. Experimental Neurology, 256, 133-143.

Levin J, Singh A, Feddersen B, Mehrkens JH, & Bötzel K. (2014). Onset latency of segmental dystonia after deep brain stimulation cessation: a randomized, double-blind crossover trial. Movement Disorders, 29(7), 944-949.

Kammermeier S, Singh A, Noachtar S, Krotofil I, & Bötzel K. (2014). Intermediate latency evoked potentials of cortical multimodal vestibular areas: Acoustic stimulation. Clinical Neurophysiology, 126(3).


Singh A, Plate A, Kammermeier S, Mehrkens JH, Ilmberger J, & Bötzel K. (2013). Freezing of gait-related oscillatory activity in the human subthalamic nucleus. Basal Ganglia 3(1):25-32.

Singh A, & Bötzel K. (2013). Globus pallidus internus oscillatory activity is related to movement speed. European Journal of Neuroscience, 38(11), 3644-3649.




Singh A, Mehrkens JH, & Bötzel K. (2012). Effect of micro lesions of the basal ganglia on ballistic movements in patients with deep brain stimulation. Journal of the Neurological Sciences, 314(1-2), 175-177.

Singh A, Kammermeier S, Mehrkens JH, & Bötzel K. (2012). Movement kinematic after deep brain stimulation associated microlesions. Journal of Neurology, Neurosurgery & Psychiatry, 83(10), 1022-1026.


Singh A, Kammermeier S, Plate A, Mehrkens JH, Ilmberger J, & Bötzel K. (2011). Pattern of local field potential activity in the globus pallidus internum of dystonic patients during walking on a treadmill. Experimental Neurology, 232(2), 162-167.

Singh A, Levin J, Mehrkens JH, & Bötzel K. (2011). Alpha frequency modulation in the human basal ganglia is dependent on motor task. European Journal of Neuroscience, 33(5), 960-967.



Sharma V, Babu PP, Singh A, Singh S, & Singh R. (2007). Iron-induced experimental cortical seizures: electroencephalographic mapping of seizure spread in the subcortical brain areas. Seizure, 16(8), 680-690.